Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(4): 666-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459384

RESUMO

We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.


Assuntos
Optogenética , Transdução de Sinais , Preparações de Ação Retardada , NF-kappa B/metabolismo , Fosforilação
2.
Elife ; 122024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252473

RESUMO

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Assuntos
Espaço Extracelular , Fator 2 de Crescimento de Fibroblastos , Dimerização , ATPase Trocadora de Sódio-Potássio , Dissulfetos
3.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36173379

RESUMO

FGF2 is a cell survival factor involved in tumor-induced angiogenesis that is secreted through an unconventional secretory pathway based upon direct protein translocation across the plasma membrane. Here, we demonstrate that both PI(4,5)P2-dependent FGF2 recruitment at the inner plasma membrane leaflet and FGF2 membrane translocation into the extracellular space are positively modulated by cholesterol in living cells. We further revealed cholesterol to enhance FGF2 binding to PI(4,5)P2-containing lipid bilayers. Based on extensive atomistic molecular dynamics (MD) simulations and membrane tension experiments, we proposed cholesterol to modulate FGF2 binding to PI(4,5)P2 by (i) increasing head group visibility of PI(4,5)P2 on the membrane surface, (ii) increasing avidity by cholesterol-induced clustering of PI(4,5)P2 molecules triggering FGF2 oligomerization, and (iii) increasing membrane tension facilitating the formation of lipidic membrane pores. Our findings have general implications for phosphoinositide-dependent protein recruitment to membranes and explain the highly selective targeting of FGF2 toward the plasma membrane, the subcellular site of FGF2 membrane translocation during unconventional secretion of FGF2.


Assuntos
Colesterol , Fator 2 de Crescimento de Fibroblastos , Bicamadas Lipídicas , Fosfatidilinositol 4,5-Difosfato , Membrana Celular/metabolismo , Colesterol/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo
4.
Trends Biochem Sci ; 47(8): 699-709, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490075

RESUMO

In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Complexo de Golgi , Animais , Transporte Biológico , Membrana Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos , Transporte Proteico
5.
Elife ; 112022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348113

RESUMO

Fibroblast growth factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse subclasses consisting of syndecans, perlecans, glypicans, and others, Glypican-1 (GPC1) is the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Glipicanas , Membrana Celular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Humanos
6.
Commun Biol ; 3(1): 141, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214225

RESUMO

FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces.


Assuntos
Membrana Celular/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células CHO , Cricetulus , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Sistemas do Segundo Mensageiro , Via Secretória , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...